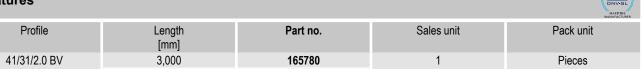

hot-dip galvanised

Application

- Fast and efficient attachment of piping and pipe routes
- Also ideal as support structure for air

Your advantages


- Back perforation matched to the spacings in the bulb flats used in shipbuilding
- Meshing into the channel slot for positive-fit attachment of add-on
- High bending stiffness due to the cross-section design
- For secure fastening that is adjustable laterally and vertically
- For setting up structures with correctly measured static loads by means of diverse connection components
- Strong, square C-section combines compact design with optimum loadbearing capacity

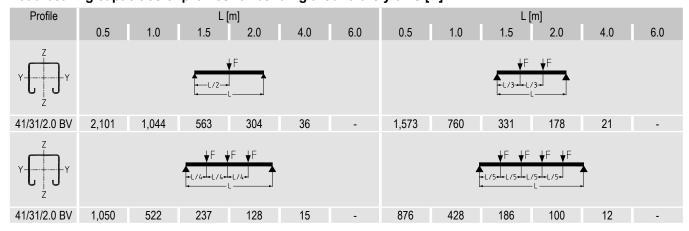
Profile 41/31/2.0

Features

165781

We also manufacture MPR-Installation channels BV in other material/surface variants on request. These products are manufactured to order. Minimum quantities and delivery times on request.

6,000



Technical data

Technical data of profile:

Features										
Profile	Material	Surface	Admissible	Available	Profile	Profile	Moment of inertia		Resistance moment	
Y-L			steel stress σ _{adm.} [N/mm ²]	threaded plates*	weight [kg/m]	cross- section [cm²]	ly [cm⁴]	lz [cm⁴]	Wy [cm³]	Wz [cm³]
41/31/2.0 BV	S250 GD+Z	hot-dip galvanised	162	M8, M10, M12, M16	1.85	2.1	2.5906	6.0922	1.622	2.972

Load bearing capacities of profiles for bending around the y-axis [N]:

The determined loads apply for static loads. Calculation based on Eurocode (EC3).

The safety coefficient γ = 1.54 takes into account the partial and combination coefficients as well as the safety factor of the material. For the given values, the permissible steel stress and the maximum permissible deflection L_{/200} are not exceeded, taking the deadweight into consideration.

Technical data

Permissible buckling loads for profiles [N]:

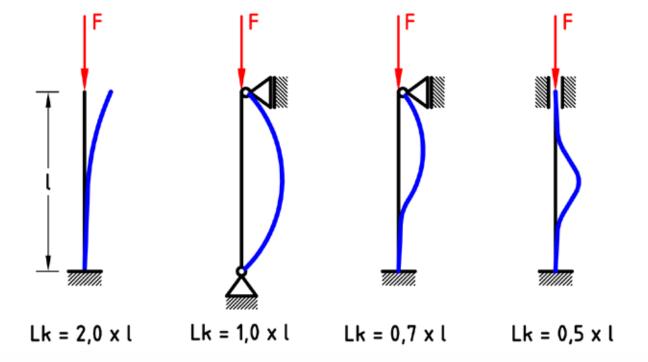
remissible buckling loads for promes [14].					
Buckling length Lk [mm]	41/31/2.0 BV				
200	34,075				
300	33,007				
400	31,779				
500	30,439				
600	28,942				
700	27,255				
800	25,376				
900	23,345				
1.000	21,247				
1.100	19,183				
1.200	17,238				
1.300	15,463				
1.400	13,877				
1.500	12,477				
1.600	11,251				
1.700	10,178				
1.800	9,239				
1.900	8,417				
2.000	7,694				
2.100	7,057				
2.200	6,493				
2.300	5,992				
2.400	5,546				
2.500	5,146				
2.600	4,788				
2.700	4,465				
2.800	4,173				
2.900	3,909 3,669				
3.000 3.100	3,450				
3.200	3,250				
3.300	3,067				
3.400	2,898				
3.500	2,743				
3.600	2,601				
3.700	2,469				
3.800	2,346				
3.900	2,233				
4.000	2,127				
4.100	2,029				
4.200	1,938				
4.300	1,852				
4.400	1,772				
4.500	1,697				
4.600	1,627				
4.700	1,561				
4.800	1,499				
4.900	1,441				
5.000	1,385				
5.100	1,333				
5.200 5.300	1,284 1,238				
5.400	1,238				
5.500	1,194				
5.600	1,152 1,113				
5.700	1,113				
5.800	1,039				
5.900	1,005				
6.000	973				
0.000	313				

Technical data

Buckling loads as per DIN EN 1993-1-1 sections 6.2 and 6.3.

The values in the table apply for fully bearing cross-sections and central load transmission!

The potentially lower slenderness parameter for buckling and lateral torsional buckling must be examined separately!


Buckling about the z-axis and the y-axis was considered.

The least favourable buckling load is documented in the table.

The safety coefficient γ = 1.54 takes into account the safety and combination coefficients as well as the safety factor of the material.

Determine the authoritative buckling length Lk depending on the storage conditions and the rod length I, as shown in the figure.

Read off the buckling load F as Lk from the table.

